The generator matrix

 1  0  1  1  1  1  1  1  0  1  3  1  1  1  1 2X  1 X+3  1  1  1 X+3  1  1 2X+6  1  1  1  1  1  1  1  1  1  X  1 2X+3  1  3  0  1  1  1  1  1  1  1  1  1  1  1  1  6  1  1  1  1  1  1  1  1  1  1 2X  1  1  1  1 2X+6  1 2X+6 2X  1  1  1 2X+6  1  1  3  1  1  1  1 X+6  1  3  1  1  1 2X+6  3  1
 0  1  1  8 X+3 X+2 2X+4 2X  1 X+4  1  2 2X+8 X+1  3  1 2X+8  1  1 2X+6 2X+1  1 2X+2  0  1 X+8  4  5 X+1 2X X+2 2X+4 X+6 2X+6  1 X+6  1 X+1  1  1 X+6 2X+7 2X+2 2X+7 2X+3 2X+8  0  1  5 2X+1 2X  1  1 X+4 X+2 X+1 X+6  3 2X+3 X+7 X+3  7 2X  1 X+4  6  0 2X+2  1 2X+3  1  1 2X+1 X+7 2X+1  1  0 X+8  1  6 2X+7 X+1 2X+8  1  X  1 X+6  1 X+4  1  1 2X+4
 0  0 2X  0  3  3  6  0 2X+6 X+3 X+3 X+3 2X+3 2X+6 X+6  6  0  0 X+6 2X+3 X+6 2X X+3  6 2X X+6  6 2X  0  3 2X 2X+6 X+3 X+3 X+3 2X+6 X+3  0  X 2X+6 2X+3  X X+6 X+6  X 2X+6 2X  6 X+6 2X+6 2X 2X+3  X 2X+6  3  X  X X+3  6  3  X  X 2X+3 2X+6  X  X 2X+6  3  0  X  3 2X+3  6 2X+3  0 X+6  3 2X+3  0  6 2X 2X+6 X+3  6 2X 2X 2X+6  3 X+3 2X  3  3
 0  0  0  6  6  0  3  3  3  6  6  0  0  3  0  6  3  3  3  3  0  6  3  6  0  6  3  6  6  6  3  0  6  3  6  6  0  0  3  0  0  3  6  6  6  3  6  0  3  6  0  3  0  0  3  3  0  6  0  3  3  0  0  6  0  3  3  0  0  0  6  6  6  6  0  6  0  6  3  3  3  6  0  0  0  6  3  6  0  3  3  3

generates a code of length 92 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 176.

Homogenous weight enumerator: w(x)=1x^0+372x^176+506x^177+846x^178+1746x^179+934x^180+1134x^181+2550x^182+1190x^183+1386x^184+2454x^185+984x^186+1260x^187+1734x^188+710x^189+594x^190+624x^191+180x^192+126x^193+138x^194+56x^195+42x^197+20x^198+24x^200+12x^201+24x^203+14x^204+6x^206+6x^209+2x^210+6x^213+2x^228

The gray image is a code over GF(3) with n=828, k=9 and d=528.
This code was found by Heurico 1.16 in 2 seconds.